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7.6 Moments, Centers of Mass, and Centroids

Understand the definition of mass.
Find the center of mass in a one-dimensional system.
Find the center of mass in a two-dimensional system.
Find the center of mass of a planar lamina.
Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass
In this section, you will study several important applications of integration that are 
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is
independent of the particular gravitational system in which the body is located. However,
because so many applications involving mass occur on Earth’s surface, an object’s mass
is sometimes equated with its weight. This is not technically correct. Weight is a type of
force and as such is dependent on gravity. Force and mass are related by the equation

The table below lists some commonly used measures of mass and force, together with
their conversion factors.

Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Use 32 feet per second per second as the acceleration due to gravity.

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass.

 � 0.03125 slug

 � 0.03125 
pound

foot per second per second

 �
1 pound

32 feet per second per second

Force � �mass��acceleration� Mass �
force

acceleration

     Force � �mass��acceleration�.     

System of
Measurement

Measure 
of Mass Measure of Force

U.S. Slug Pound � �slug�(ft�sec2�

International Kilogram Newton � �kilogram��m�sec2�

C-G-S Gram Dyne � �gram��cm�sec2�

Conversions:

1 foot � 0.3048 meter1 dyne � 0.00001 newton

1 gram � 0.00006852 slug1 dyne � 0.000002248 pound

1 kilogram � 0.06852 slug1 newton � 0.2248 pound

1 slug � 14.59 kilograms1 pound � 4.448 newtons
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Center of Mass in a One-Dimensional System
You will now consider two types of moments of a mass—the moment about a point
and the moment about a line. To define these two moments, consider an idealized
situation in which a mass is concentrated at a point. If is the distance between this
point mass and another point then the moment of m about the point P is

and is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in

Figure 7.53. A child of mass 20 kilograms sits 2 meters to the left of fulcrum and an
older child of mass 30 kilograms sits 2 meters to the right of From experience, you
know that the seesaw will begin to rotate clockwise, moving the larger child down. This
rotation occurs because the moment produced by the child on the left is less than the
moment produced by the child on the right.

kilogram-meters

kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger child
moved to a position meters from the fulcrum, then the seesaw would balance, because
each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin
corresponds to the fulcrum, as shown in Figure 7.54. Several point masses are located
on the axis. The measure of the tendency of this system to rotate about the origin is
the moment about the origin, and it is defined as the sum of the products The
moment about the origin is denoted by and can be written as

If is 0, then the system is said to be in equilibrium.

If then the system is in equilibrium.
Figure 7.54

For a system that is not in equilibrium, the center of mass is defined as the point
at which the fulcrum could be relocated to attain equilibrium. If the system were 

translated units, then each coordinate would become

and because the moment of the translated system is 0, you have

Solving for produces

When the system is in equilibrium.m1x1 � m2x2 � .  .  . � mnxn � 0,

x �
�
n

i�1
mixi

�
n

i�1
mi

�
moment of system about origin

total mass of system
.

x

�
n

i�1
 mi�xi � x� � �

n

i�1
 mixi � �

n

i�1
 mix � 0.

�xi � x �

xix
x

m1x1 � m2 x2 � .  .  . � mn xn � 0,

m1
x

x1

m2

x2

mn − 1

xn − 1

mn

xn

m3

x30

M0

M0 � m1x1 � m2x2 � .  .  . � mnxn.

M0

mi xi.n
x-

4
3

Right moment �  �30��2� � 60

 Left moment �  �20��2� � 40

P.
P,

x

     Moment � mx     

P,
xm
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2 m2 m

20 kg 30 kg

P

The seesaw will balance when the left
and the right moments are equal.
Figure 7.53
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The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

Figure 7.55

Solution The moment about the origin is

Because the total mass of the system is 

the center of mass is

Note that the point masses will be in equilibrium when the fulcrum is located at 

Rather than define the moment of a mass, you could define the moment of a force.
In this context, the center of mass is called the center of gravity. Consider a system of
point masses that is located at Then, because

the total force of the system is

The torque (moment) about the origin is

and the center of gravity is

So, the center of gravity and the center of mass have the same location.

T0

F
�

M0a
ma

�
M0

m
� x.

� M0a T0 � �m1a�x1 � �m2a�x2 � .  .  . � �mna�xn

� ma. F � m1a � m2a � .  .  . � mna

force � �mass��acceleration�

x1, x2, .  .  . , xn.m1, m2, .  .  . , mn

x � 1.

x �
M0

m
�

40
40

� 1.

m � 10 � 15 � 5 � 10 � 40

 � 40.

 � �50 � 0 � 20 � 70

 � 10��5� � 15�0� � 5�4� � 10�7�
 M0 � m1x1 � m2x2 � m3x3 � m4x4

0 1 2 3 4 5 6 7 8 9−5 −4 −3 −2 −1

x1010 515

m4m3m2m1
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Moments and Center of Mass: One-Dimensional System

Let the point masses be located at 

1. The moment about the origin is 

2. The center of mass is

where is the total mass of the system.m � m1 � m2 � .  .  . � mn

x �
M0

m

M0 � m1x1 � m2x2 � .  .  . � mnxn.

x1, x2,  .  .  . , xn.m1, m2,  .  .  . , mn
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Center of Mass in a Two-Dimensional System
You can extend the concept of moment to two dimensions by considering a system of
masses located in the plane at the points as shown in
Figure 7.56. Rather than defining a single moment (with respect to the origin), two
moments are defined—one with respect to the axis and one with respect to the

axis.

The moment of a system of masses in the plane can be taken about any horizontal
or vertical line. In general, the moment about a line is the sum of the product of the
masses and the directed distances from the points to the line.

Horizontal line 

Vertical line 

The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses and
located at

and

as shown in Figure 7.57.

Solution

Mass

Moment about axis

Moment about axis

So,

and

The center of mass is �11
5 , 35�.

y �
Mx

m
�

12
20

�
3
5

.

x �
My

m
�

44
20

�
11
5

x-Mx � 6��2� � 3�0� � 2(3�  � 9�2� � 12

y-My � 6�3�  � 3�0� � 2��5� � 9�4� � 44

m  � 6  � 3  � 2  � 9  � 20

�4, 2���5, 3�,�0, 0�,�3, �2�,

m4 � 9,
m1 � 6, m2 � 3, m3 � 2,

x � aMoment � m1�x1 � a� � m2�x2 � a� � .  .  . � mn�xn � a�
y � bMoment � m1� y1 � b� � m2� y2 � b� � .  .  . � mn� yn � b�

y-
x-

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�,xy-
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Moment and Center of Mass: Two-Dimensional System

Let the point masses be located at 

1. The moment about the -axis is

2. The moment about the -axis is

3. The center of mass (or center of gravity) is

and

where

is the total mass of the system.

m � m1 � m2 � .  .  . � mn

y �
Mx

m
x �

My

m

�x, y�

Mx � m1y1 � m2y2 � .  .  .  mnyn.

x

My � m1x1 � m2x2 � .  .  .  mnxn.

y

�x1, y1�, �x2, y2�, .  .  . , �xn, yn).m1, m2, .  .  . , mn

m2

mn

m1

x

(x2, y2)

(x1, y1)

(xn, yn)

y

In a two-dimensional system, there is 
a moment about the -axis and a
moment about the -axis 
Figure 7.56

Mx.x
Myy

m2 = 3

m1 = 6

m3 = 2
m4 = 9

4321

3

2

1

−1−2−3−4−5

−3

−2

−1

x
(0, 0)

(−5, 3)

(4, 2)

(3, −2)

y

Figure 7.57
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Center of Mass of a Planar Lamina
So far in this section, you have assumed the total mass of a system to be distributed at
discrete points in a plane or on a line. Now consider a thin, flat plate of material of 
constant density called a planar lamina (see Figure 7.58). Density is a measure of
mass per unit of volume, such as grams per cubic centimeter. For planar laminas,
however, density is considered to be a measure of mass per unit of area. Density is 
denoted by the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina 
of uniform density bounded by the graphs of

and as shown in
Figure 7.59. The mass of this region is

where is the area of the region. To find the 
center of mass of this lamina, partition the 
interval into subintervals of equal width 

Let be the center of the subinterval. 
You can approximate the portion of the lamina 
lying in the subinterval by a rectangle whose 
height is Because the density 
of the rectangle is its mass is

Density Height Width

Now, considering this mass to be located at the center of the rectangle, the directed
distance from the axis to is So, the moment of about
the axis is

Summing the moments and taking the limit as suggest the definitions below.n →�

 � � � f�xi� � g�xi�� �x�f�xi� � g�xi�
2 	.

 � miyi

 Moment � �mass��distance�

x-
miyi � �f�xi� � g�xi���2.�xi, yi�x-

�xi, yi�

� � � f�xi� � g�xi�� �x . mi � �density��area�

�,
h � f�xi� � g�xi�.

ith

ithxi�x.
n�a, b�

A

 � �A

 � � 
b

a

 � f�x� � g�x�� dx

 m � �density��area�

a � x � b,y � f�x�, y � g�x�,
�,

�,
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x
a xi b

(xi, g(xi))

(xi, f(xi))

(xi, yi)yi

f

g

Δx

y

Planar lamina of uniform density 
Figure 7.59

�

Moments and Center of Mass of a Planar Lamina

Let and be continuous functions such that on and 
consider the planar lamina of uniform density bounded by the graphs of

and 

1. The moments about the - and -axes are

2. The center of mass is given by and where

is the mass of the lamina.m � � �b
a � f�x� � g�x�� dx

y �
Mx

m
,x �

My

m
�x, y�

My � � 
b

a

 x� f�x� � g�x�� dx.

Mx � � 
b

a

 � f�x� � g�x�
2 	� f �x� � g�x�� dx

yx

a � x � b.y � g�x�,y � f�x�,
�

�a, b�,f�x� 	 g�x�gf

(x, y)

You can think of the center of mass
of a lamina as its balancing point.

For a circular lamina, the center of
mass is the center of the circle. For a
rectangular lamina, the center of mass
is the center of the rectangle.
Figure 7.58

�x, y�

(x, y)
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The Center of Mass of a Planar Lamina

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density bounded by the graph of
and the axis.

Solution Because the center of mass lies on the axis of symmetry, you know that
Moreover, the mass of the lamina is

To find the moment about the axis, place a 
representative rectangle in the region, as shown 
in the figure at the right. The distance from 
the axis to the center of this rectangle is

Because the mass of the representative rectangle
is

you have

and is

So, the center of mass (the balancing point) of the lamina is as shown in
Figure 7.60.

The density in Example 4 is a common factor of both the moments and the mass,
and as such divides out of the quotients representing the coordinates of the center of
mass. So, the center of mass of a lamina of uniform density depends only on the shape
of the lamina and not on its density. For this reason, the point

Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the
region. In other words, to find the centroid of a region in the plane, you simply assume
that the region has a constant density of and compute the corresponding center
of mass.

� � 1

�x, y�

�

�0, 85�,

y �
Mx

m
�

256��15
32��3

�
8
5

.

y

 �
256�

15

 �
�

2 �16x �
8x3

3
�

x5

5 	
2

�2

 �
�

2
 
2

�2
 �16 � 8x2 � x4� dx

 Mx � � 
2

�2
 
4 � x2

2
 �4 � x2� dx

� f�x� �x � � �4 � x2� �x

yi �
f�x�
2

�
4 � x2

2
.

x-

x-

 �
32�

3
.

 � ��4x �
x3

3 	
2

�2  

 m � � 
2

�2
 �4 � x2� dx

x � 0.

x-f �x� � 4 � x2
�
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x
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Δx

f(x)

f(x)
2

f(x) = 4 − x2

y
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y

y = 4 − x2

Center of mass:

0, 8
5

1
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4

−1
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1 2 3

))

The center of mass is the balancing
point.
Figure 7.60
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The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of and 

Solution The two graphs intersect at the points and as shown in
Figure 7.61. So, the area of the region is

The centroid of the region has the following coordinates.

So, the centroid of the region is 

For simple plane regions, you may be able to find the centroids without resorting
to integration.

The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

Solution By superimposing a coordinate system on the region, as shown in Figure
7.62(b), you can locate the centroids of the three rectangles at

and

Using these three points, you can find the centroid of the region.

So, the centroid of the region is (2.9, 1). Notice that is not the “average” of 
and �5, 1�.�5

2, 12�,�1
2, 32�,

�2.9, 1�

y �
�3�2��3� � �1�2��3� � �1��4�

10
�

10
10

� 1

x �
�1�2��3� � �5�2��3� � �5��4�

10
�

29
10

� 2.9

A � area of region � 3 � 3 � 4 � 10

�5, 1�.�5
2

, 
1
2
,�1

2
, 

3
2
,

�x, y� � ��1
2, 12

5 �.

 �
12
5

 �
1
9 �

x5

5
� 3x3 � 2x2 � 12x	

1

�2

 �
1
9

 
1

�2
 �x4 � 9x2 � 4x � 12� dx

 �
2
9 �

1
2
 
1

�2
 ��x2 � x � 6���x2 � x � 2� dx

y �
1
A

 
1

�2
 ��4 � x2� � �x � 2�

2 	��4 � x2� � �x � 2�� dx

 � �
1
2

 �
2
9 ��

x4

4
�

x3

3
� x2	

1

�2

 �
2
9


1

�2
 ��x3 � x2 � 2x� dx

 x �
1
A

 
1

�2
 x��4 � x2� � �x � 2�� dx

�x, y�

 A � 
1

�2
 � f�x� � g�x�� dx � 
1

�2
 �2 � x � x2� dx �

9
2

.

�1, 3�,��2, 0�

g�x� � x � 2.f�x� � 4 � x2
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x
−1

1

1

(1, 3)

(−2, 0)

f(x) + g(x)
2

f(x) − g(x)

x

g(x) = x + 2
y

f(x) = 4 − x2

Figure 7.61
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23

1

(a) Original region

x
1

1

2

2

3

3

4 5 6

(5, 1)

y

3
2

1
2 )) , 

1
2

5
2 )) , 

(b) The centroids of the three rectangles

Figure 7.62
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Theorem of Pappus
The final topic in this section is a useful theorem credited to Pappus of Alexandria 
(ca. 300 A.D.), a Greek mathematician whose eight-volume Mathematical Collection is
a record of much of classical Greek mathematics. You are asked to prove this theorem
in Section 14.4.

The Theorem of Pappus can be used to find the volume of a torus, as shown in the
next example. Recall that a torus is a doughnut-shaped solid formed by revolving a 
circular region about a line that lies in the same plane as the circle (but does not 
intersect the circle).

Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving
the circular region bounded by 

about the axis, as shown in Figure 7.64(b).

(a) (b)

Figure 7.64

Solution In Figure 7.67(b), you can see that the centroid of the circular region is 
So, the distance between the centroid and the axis of revolution is

Because the area of the circular region is the volume of the torus is

 � 39.5.

 � 4
2

 � 2
�2��
�
 V � 2
rA

A � 
,

r � 2.

�2, 0�.

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)r = 2

(x − 2)2 + y2 = 1

y

Torus

y-

�x � 2�2 � y2 � 1
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THEOREM 7.1 The Theorem of Pappus

Let be a region in a plane and let be a line in the same plane such that 
does not intersect the interior of as shown in Figure 7.63. If is the distance
between the centroid of and the line, then the volume of the solid of 
revolution formed by revolving about the line is

where is the area of (Note that is the distance traveled by the centroid 
as the region is revolved about the line.)

2
rR.A

V � 2
rA

R
VR

rR,
LLR

R

r

Centroid of R

L

The volume is where is the
area of region 
Figure 7.63

R.
A2
 rA,V

Exploration

Use the shell method to show 
that the volume of the torus 
in Example 7 is

Evaluate this integral using 
a graphing utility. Does your
answer agree with the one 
in Example 7?

V �
3

1
 4
x�1 � �x �2�2 dx.

9781285057095_0706.qxp  9/17/12  2:14 PM  Page 493

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



494 Chapter 7 Applications of Integration

7.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

mi 3 4 2 1 6

�xi, yi� ��2, �3� �5, 5� �7, 1� �0, 0� ��3, 0�

mi 12 6 4.5 15

�xi, yi� �2, 3� ��1, 5� �6, 8� �2, �2�

mi 5 1 3

�xi, yi� �2, 2� ��3, 1� �1, �4�

mi 10 2 5

�xi, yi� �1, �1� �5, 5� ��4, 0�

Center of Mass of a Linear System In Exercises 1–4,
find the center of mass of the point masses lying on the -axis.

1.

2.

3.

4.

5. Graphical Reasoning

(a) Translate each point mass in Exercise 3 to the right four
units and determine the resulting center of mass.

(b) Translate each point mass in Exercise 4 to the left two
units and determine the resulting center of mass.

6. Conjecture Use the result of Exercise 5 to make a 
conjecture about the change in the center of mass that results
when each point mass is translated units horizontally.

Statics Problems In Exercises 7 and 8, consider a beam of
length with a fulcrum feet from one end (see figure). There
are objects with weights and placed on opposite ends of
the beam. Find such that the system is in equilibrium.

7. Two children weighing 48 pounds and 72 pounds are going to
play on a seesaw that is 10 feet long.

8. In order to move a 600-pound rock, a person weighing 
200 pounds wants to balance it on a beam that is 5 feet long.

Center of Mass of a Two-Dimensional System In
Exercises 9–12, find the center of mass of the given system of
point masses.

9.

10.

11.

12.

Center of Mass of a Planar Lamina In Exercises 13–26,
find and for the laminas of uniform density 
bounded by the graphs of the equations.

13. 14.

15. 16.

17. 18.

19.

20.

21. 22.

23. 24.

25. 26.

Approximating a Centroid In Exercises 27–30, use a
graphing utility to graph the region bounded by the graphs of
the equations. Use the integration capabilities of the graphing
utility to approximate the centroid of the region.

27.

28.

29. Prefabricated End Section of a Building

30. Witch of Agnesi

Finding the Center of Mass In Exercises 31–34,
introduce an appropriate coordinate system and find the 
coordinates of the center of mass of the planar lamina. (The
answer depends on the position of the coordinate system.)

31. 32.

33. 34.

6

2

7
8

7
8

2

4 4

1

1

2
1

1

5

3 3

7

2

1
2

2 1

1

2

2 1

y �
8

x2 � 4
, y � 0, x � �2, x � 2

y � 5 3�400 � x2, y � 0

y � xe�x�2, y � 0, x � 0,  x � 4

y � 10x�125 � x3, y � 0

x � y � 2, x � y 2x � �y, x � 2y � y 2

x � 3y � y2, x � 0x � 4 � y 2, x � 0

y � x2�3, y � 4y � x2�3, y � 0, x � 8

y � �x � 1, y �
1
3x � 1

y � �x2 � 4x � 2, y � x � 2

y � �x, y �
1
2 xy � x2, y � x3

y �
1
2x2, y � 0, x � 2y � �x, y � 0, x � 4

y � 6 � x, y � 0, x � 0y �
1
2 x, y � 0, x � 2

��x, y�Mx, My,

x
W2W1

xL

k

x1 � �2, x2 � 6, x3 � 0, x4 � 3, x5 � �5

m1 � 8, m2 � 5, m3 � 5, m4 � 12, m5 � 2

x1 � 6, x2 � 10, x3 � 3, x4 � 2, x5 � 4

m1 � 1, m2 � 3, m3 � 2, m4 � 9, m5 � 5

x1 � �3, x2 � �2, x3 � 5, x4 � 4

m1 � 7, m2 � 4, m3 � 3, m4 � 8

x1 � �5, x2 � 0, x3 � 3

m1 � 7, m2 � 3, m3 � 5

x

x L − x

W1

W2
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7.6 Moments, Centers of Mass, and Centroids 495

35. Finding the Center of Mass Find the center of mass of
the lamina in Exercise 31 when the circular portion of the lamina
has twice the density of the square portion of the lamina.

36. Finding the Center of Mass Find the center of mass of
the lamina in Exercise 31 when the square portion of the lamina
has twice the density of the circular portion of the lamina.

Finding Volume by the Theorem of Pappus In
Exercises 37–40, use the Theorem of Pappus to find the volume
of the solid of revolution.

37. The torus formed by revolving the circle

about the axis

38. The torus formed by revolving the circle

about the axis

39. The solid formed by revolving the region bounded by the
graphs of and about the axis

40. The solid formed by revolving the region bounded by the
graphs of and about the axis

Centroid of a Common Region In Exercises 45–50, find
and/or verify the centroid of the common region used in 
engineering.

45. Triangle Show that the centroid of the triangle with 
vertices and is the point of intersection of
the medians (see figure).

Figure for 45 Figure for 46

46. Parallelogram Show that the centroid of the parallelogram
with vertices and is the point of
intersection of the diagonals (see figure).

47. Trapezoid Find the centroid of the trapezoid with vertices
and Show that it is the intersection

of the line connecting the midpoints of the parallel sides and
the line connecting the extended parallel sides, as shown in the 
figure.

Figure for 47 Figure for 48

48. Semicircle Find the centroid of the region bounded by the
graphs of and (see figure).

49. Semiellipse Find the centroid of the region bounded by

the graphs of and (see figure).

Figure for 49 Figure for 50

50. Parabolic Spandrel Find the centroid of the parabolic
spandrel shown in the figure.

x

(1, 1)

(0, 0)

Parabolic spandrel

y = 2x − x2

y

x
−a a

b

y

y � 0y �
b
a
�a2 � x2

y � 0y � �r2 � x2

x
−r r

r

y

x

(0, a)

(0, 0)

(c, b)

(c, 0)
b

a

y

�c, 0�.�c, b�,�0, a�,�0, 0�,

�a � b, c��b, c�,�a, 0�,�0, 0�,

x

(b, c) (a + b, c)

(a, 0)

y

x

(b, c)

(−a, 0) (a, 0)

y

�b, c���a, 0�, �a, 0�,

y-x � 6y � 2�x � 2, y � 0,

x-x � 0y � x, y � 4,

x-

x2 � �y � 3�2 � 4

y-

�x � 5�2 � y 2 � 16

WRITING ABOUT CONCEPTS
41. Center of Mass Let the point masses 

be located at 
Define the center of mass 

42. Planar Lamina What is a planar lamina? Describe
what is meant by the center of mass of a planar lamina.

43. Theorem of Pappus State the Theorem of Pappus.

�x, y�

�x, y�.
�x2, y2�, .  .  . , �xn, yn�.�x1, y1�,m2, .  .  . , mn

m1,

44. HOW DO YOU SEE IT? The centroid of the
plane region bounded by the graphs of 

and is Is it possible
to find the centroid of each of the regions bounded
by the graphs of the following sets of equations? If
so, identify the centroid and explain your answer.

(a) and 

(b) and 

(c) and 

(d) and x � 4y � f �x�,  y � 0,  x � 2,

x � 3y � �f �x�,  y � 0,  x � 0,

x � 5y � f �x � 2�,  y � 0,  x � 2,

x � 3y � f �x� � 2,  y � 2,  x � 0,

1 2 3 4 5

1

2

3

4

5 y = f(x)

Centroid: (1.2, 1.4)

x

y

�1.2, 1.4�.x � 3x � 0,y � 0,
y � f �x�,
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496 Chapter 7 Applications of Integration

51. Graphical Reasoning Consider the region bounded by
the graphs of and where 

(a) Sketch a graph of the region.

(b) Use the graph in part (a) to determine Explain.

(c) Set up the integral for finding Because of the form of
the integrand, the value of the integral can be obtained
without integrating. What is the form of the integrand?
What is the value of the integral? Compare with the result
in part (b).

(d) Use the graph in part (a) to determine whether or

Explain.

(e) Use integration to verify your answer in part (d).

52. Graphical and Numerical Reasoning Consider the
region bounded by the graphs of and where

and is a positive integer.

(a) Sketch a graph of the region.

(b) Set up the integral for finding Because of the form of
the integrand, the value of the integral can be obtained
without integrating. What is the form of the integrand?
What is the value of the integral and what is the value of 

(c) Use the graph in part (a) to determine whether or

Explain.

(d) Use integration to find as a function of 

(e) Use the result of part (d) to complete the table.

(f ) Find 

(g) Give a geometric explanation of the result in part (f).

53. Modeling Data The manufacturer of glass for a window
in a conversion van needs to approximate its center of mass. A
coordinate system is superimposed on a prototype of the glass
(see figure). The measurements (in centimeters) for the right
half of the symmetric piece of glass are listed in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the glass.

(b) Use the regression capabilities of a graphing utility to find
a fourth-degree polynomial model for the data.

(c) Use the integration capabilities of a graphing utility and
the model to approximate the center of mass of the glass.
Compare with the result in part (a).

54. Modeling Data The manufacturer of a boat needs to
approximate the center of mass of a section of the hull. A 
coordinate system is superimposed on a prototype (see figure).
The measurements (in feet) for the right half of the symmetric 
prototype are listed in the table.

(a) Use Simpson’s Rule to approximate the center of mass of
the hull section.

(b) Use the regression capabilities of a graphing utility to find
fourth-degree polynomial models for both curves shown in
the figure. Plot the data and graph the models.

(c) Use the integration capabilities of a graphing utility and
the models to approximate the center of mass of the hull
section. Compare with the result in part (a).

Second Theorem of Pappus In Exercises 55 and 56, use
the Second Theorem of Pappus, which is stated as follows. If a
segment of a plane curve is revolved about an axis that does
not intersect the curve (except possibly at its endpoints), the
area of the resulting surface of revolution is equal to the
product of the length of times the distance traveled by the
centroid of 

55. A sphere is formed by revolving the graph of 
about the axis. Use the formula for surface area,
to find the centroid of the semicircle 

56. A torus is formed by revolving the graph of 
about the axis. Find the surface area of the torus.

57. Finding a Centroid Let be constant, and consider
the region bounded by the axis, and Find
the centroid of this region. As what does the region
look like, and where is its centroid?

n →�,
x � 1.x-f �x� � xn,

n 	 1

y-
�x � 1�2 � y 2 � 1

y � �r2 � x2.
S � 4
r2,x-

y � �r2 � x2

C.
dC

S

C

x 0 0.5 1.0 1.5 2

l 1.50 1.45 1.30 0.99 0

d 0.50 0.48 0.43 0.33 0

x
−2.0 −1.0 1.0

1.0

2.0

l

d

y

x
−40 −20 20

20
10

40

40

y
x 0 10 20 30 40

y 30 29 26 20 0

lim
n→�

y.

n.y

y <
b
2

.

y >
b
2

x?

My.

nb  >  0
y � b,y � x2n

y <
b
2

.

y >
b
2

My.

x.

b > 0.y � b,y � x2

n 1 2 3 4

y

PUTNAM EXAM CHALLENGE
58. Let be the region in the cartesian plane consisting of all

points satisfying the simultaneous conditions
and Find the centroid of 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

V.�x, y�y � 4.�x� � y � �x� � 3
�x, y�

V
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